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ct. This study deals in its first stage with some neuro-fuzzy algorithms 
 learn fuzzy inference systems. Two categories of neuro-fuzzy learning 
hes are described and compared. The first contains the conventional 
 approaches, which were developed by Ichihashi, Nomura, Wang and 
. The second consists of another method developed by Shi and Mizumoto. 
mparison is based on practical properties related to structure and 

ters learning. Then, the drawn conclusions and the mentioned properties 
d to provide a comparison between the considered neuro-fuzzy methods 
eveloped defuzzification-based learning algorithm for fuzzy systems. The 
ges of this algorithm over the neuro-fuzzy ones are clearly emphasized.  

ction 
portance of fuzzy inference systems in the linguistic representation of 
edge and expertise, the design of these systems has been given a great 
tion in the literature. Design methods using data-driven neuro-fuzzy 
oaches, where a neural network learning procedure is used to identify 
o-Kang (TSK) fuzzy model parameters, have been devised [1-7].  

dresses first two categories of neuro-fuzzy learning approaches: The 
ones and another new approach [1-6]. An overview of these learning 
iven and then they are compared using structure and learning-related 
ased on the comparison results and the mentioned properties, a 
n-based learning algorithm for fuzzy systems [8-10] is brought into 
ompared with the considered neuro-fuzzy methods. The advantages of 
 as they relate to practically important properties; such as the simplicity 

e initial fuzzy system, the avoidance of non-firing states, linguistic 
y, etc., are emphasized.  

zzy Inference Models 
y system of zero order [7], the antecedent part of each rule is composed 
variables and the consequent is a crisp value. Hence, in a system 
 xj, j=1,2, …, , and one output, y, the rth rule, 1 ≤ r≤ k, is expressed as p
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In (1), Ajr are the rth rule fuzzy sets assigned respectively over the input variables xj 
and yr is the rth rule crisp consequent. Based on the rules structure, the number of 
membership functions (MF’s) on each input variable is equal to the number of rules 
and each MF on an input variable participates in only one rule. 

The output value corresponding to input vector xi = (x1i, x2i, …, xpi) is computed using 
a weighted average formula as follows: 

                                                  ∑∑ === k
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k
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The use of product for “and,” which is applied in neuro-fuzzy methods, gives the 
firing strength of rule r expressed as: 
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1j jijrri )(xAh

3   Neuro-Fuzzy Learning Methods 
Two main neuro-fuzzy learning approaches are of interest here: the conventional one 
developed in [1-4] and the new approach [6].  

3.1 Conventional Neuro-Fuzzy Methods 

Referring back to Section 2, we note here that Eq. (2) was used by Wang and Mendel 
[4] and Nomura [3]. Ichihashi [1,2] used a simplified version of (2) to get the system 
output:                         
                                                                                                          (4) .yhy k
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Ichihashi and Wang-Mendel used Gaussian MF’s while Nomura used triangular ones.  
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Fig. 1.  Conventional neuro-fuzzy             

system with non-firing states 
Fig. 2.  Conventional neuro-fuzzy system       

with no non-firing states 

To avoid initial non-firing states, the firing strength of at least one rule (See (3)) and 
for any input xi must differ from zero. Hence, any region in the input space must be 
covered by all the MF’s of at least one rule. This requires a special setting of the 
initial MF’s. For a system with two inputs, say, there has to be as many MF’s having 
the same shape on each input as there are distinct ones. Fig. 1 illustrates the case of a 
4-rule and 2-input system where non-firing states exist if xi is anywhere in the regions 
outside those assigned for the rules. In Fig. 2, however, non-firing states are avoided 
since the MF’s are assigned as required. Undoubtedly, the process of initial MF’s and 
rules assignments gets more difficult when the number of these MF’s and rules 
increases and when the system has more than two inputs (See Section 3.3.4). 
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When n training input-output data (xi, yid), where i = 1,2,…n, are given, then they are 
used in an error back-propagation learning to modify the parameters of an initial 
fuzzy inference system, whose form is given in (1), and minimize the data 
approximation error. The following error function is usually adopted:  
                                                                                                     (5) .2/)yy( 2

iidiE −=

The center and width of triangular MF’s, the mean and variance of Gaussian ones and 
the crisp consequents are updated by the gradient-descent method: 
            
            ,     (6)               a/)t(iy)]t(iyidy[)t(a]a/)t(iE[)t(a)1t(a ∂∂−+=∂∂−=+ αα

where α is a learning rate, t denotes the current iteration and a is the parameter of 
concern .  

Once a data pair (xi , yid) is presented to the system and the system parameters are 
updated based on (6), then the system output for the same input xi changes at each 
update and also the error Ei. The tuning of the system parameters for the input data xi 
stops when the step size, di= | Ei(t+1) – Ei(t)|, between two consecutive iterations 
drops below a given threshold.  Then another data pair is presented to the system and 
the procedure is repeated. When all the data are presented to the system (learning 
epoch), the total error E is calculated as follows: 
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If this error is smaller than some desired error, Ed, the learning stops. If not a new 
learning epoch begins. However, the performance of repeated epochs would not 
necessarily lead to E ≤ Ed. Hence, the number of epochs is also be considered as a 
stopping criterion. 

In the above-described type of learning (pattern mode), the tuning of the system by a 
given data (xi , yid) affects the tuning of the system by all the subsequent data points. 
This effect is absent in the batch learning mode since the parameters are updated only 
after the whole data set is used. Actually, for a point (xi,yid), the adjustment 

)t(a)1t(aai −+=∆  of a given parameter a  is still computed as in (6). But, this 
adjustment is stored. When all the data pairs have been used, the total adjustment is 
computed as  In fact, batch learning is equivalent to the use of (6) 
with replaced by

.n/a2a n
1i i∑= = ∆∆

iE E . 

3.2 New Neuro-Fuzzy Approach 

The major difference between this approach (Shi and Mizumuto [6]) and the 
conventional ones is that all the combinations of the MF’s assigned over the input 
variables are used to form the antecedents of the rules. This difference along with 
pattern learning entails modifications in the properties of the algorithm. An overview 
of the new approach is provided for a system with two inputs. 

Let A1s, s = 1,2, …, l1 and A2q,  q = 1,2, …, l2, be the MF’s on input variables x1 and 
x2 respectively. Then, k=l1×l2   fuzzy rules are constructed in the form: 

                 Rule (s-1)l2 +q:  If x1 is A1s and x2 is A2q,  THEN y is y(s-1)l2+q.                   (8) 
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With h[(s-1)l2+q]i=A1s(x1i)×A2q(x2i) denoting the firing strength of the rule in (8), then the 
output is calculated as follows: 

                          ∑∑∑ ∑
= == =

+−+− +−
=

1 21 2

22

l

1s

l

1q

l

1s

l

1q
ql)1s(i]ql)1s[(i i]ql)1s[( 2

hyhy                           (9) 

3.3 Properties-Based Comparison   

The conventional and new neuro-fuzzy learning approaches are compared here based 
on properties related to their structure and the applied learning procedure. 

3.3.1 Type of Membership Functions 

Both conventional and new neuro-fuzzy methods require that the MF’s be 
differentiable with respect to their parameters. This is due to the gradient-descent 
method (6). Also, any change in the form of the used MF’s requires that the 
parameters updating formulas be rederived. 

3.3.2 Type of Logic Operations and Error Function 

The use of Eqs. (2)-(4) and (9) in neuro-fuzzy means that the fuzzy AND, OR and 
THEN are respectively represented by product, sum and product. This is essential for 
the gradient-descent formula (6), and the involved derivative. Also, the adopted error 
function influences the parameters updating formulas. 

3.3.3 Type of Learning 

The considered neuro-fuzzy algorithms, use pattern learning (Section 3.1). Referring 
to Fig. 2 and (2)-(6) it can be seen that more than one training example affect the 
same system parameters. Hence, by adjusting these parameters based on a data point 
and then going to the next, should lead to a compromise between the parameters and 
their affecting points that is not as good as the one obtained using the batch mode of 
learning (Section 3.1). In fact, this aspect becomes more serious when more data 
points affect the same system parameters, as in the new neuro-fuzzy approach 
(Section 3.2) where the MF’s are less localized. Hence, the batch mode of learning 
should be more suitable for the type of fuzzy inference structure used in the new 
neuro-fuzzy method. 

3.3.4 Setting of Initial MF’s and Rules 

The major concern in the conventional methods is the avoidance of initial non-firing 
[5]. Hence, on each system input, there must be a number, dmf, of distinct MF’s with 
each repeated rmf times to give rules antecedents covering the whole input space. As 
explained in Section 3.1, this is not simple especially when the number of rules, k , 
and input space dimension, , increase. To make things easier, two formulas are set. 
With d

p

mf×rmf=k and  rmf=dmf×(p-1), then 

                                  )1p(krand)1p(kd mfmf −=−= .                             (10) 

Of course, p is application-dependent. Hence, k needs to be chosen to give integer  dmf 
and rmf. In the new neuro-fuzzy approach, the assignment of initial MF’s and rules is 
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simple. As long as the adjacent MF’s on each input overlap (Fig. 3), then the coverage 
of the entire input space is guaranteed and initial non-firing is avoided (Section 3.2). 
 
3.3.5 Simplicity of Learning Formulas  

The learning formulas in the conventional and new methods are determined using (6). 
In the conventional methods, each MF is used once in the rules. This makes the 
application of (6) with yi as in (2) or (4) and, thus, the learning formulas simple and 
easily extended to systems with a high number of inputs as compared to the formulas 
in the new approach, where each MF on a specific input is used with all the 
combinations of MF’s on the remaining inputs (See (9) and also [6]).  

3.3.6 Number of Tuning Parameters 

For a given number of rules, k≥2 , and a number of input variables, p≥2 , the number 
of tuning parameters in the conventional approach , (2p+1)k, is greater than that in the 
new approach, which is given by 2(l1+l2+…+lp)+k, where lj is the number of 
membership functions on input xj. This can be verified as follows: Since l1≤k, 
l2≤k,…,lp≤k, with equalities that cannot be satisfied simultaneously except for: (a)  k = 
1 for any p,  (b) p=1 for any k, then for k≥2 and p≥2,  l1+l2+…+lp < pk. In cases (a) 
and (b), which rarely occur in practice, the conventional and new neuro-fuzzy 
approaches have the same number of parameters. 

3.3.7 Fitting toTraining Data 

A MF in the new neuro-fuzzy method covers a larger area in the input space as 
compared to the conventional approach (Compare Figs. 2 and 3). Hence, for the same 
set of data points, the 2 parameters of a MF in the new approach need to be adjusted 
to accommodate a larger number of data. Consequently, the fitting to training data in 
the new approach is less precise than that in the conventional one for the same 
number of rules. Data fitting results are provided in Section 3.3.8.  

3.3.8 Linguistic Interpretability 

Based on the studies in [11,12], The linguistic interpretability problem in neuro-fuzzy 
learning relates to the highly overlapping and complex MF’s obtained after training. 
This prevents the simple assignment of linguistic labels to these MF’s and leads to the 
generation of rules lacking a clear linguistic meaning. The issue of tradeoff between 
precision and interpretability has also been noted in the mentioned studies. 
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The main reason behind the MF’s complexity obtained in the neuro-fuzzy methods 
relates to the unconstrained learning of the MF’s parameters. As can be seen in Figs. 2 
and 3, the parameters of the MF’s assigned on an input variable are changed based on 
common data points; i.e., located in overlapping regions of the input space, and also 
on separate data points. Hence, these MF’s tend to pass each other, exchange 
positions, etc., as shown in Figs. 4 and 5. This would hinder the linguistic 
interpretability of the final fuzzy system. The use of crisp rules consequents does also 
contribute to the deterioration of the linguistic interpretability aspect. 
 
Fig. 4 shows the final MF’s obtained over input x1 after training a 9-rule neuro-fuzzy, 
Wang-Mendel system using 81 data points retrieved from the non-linear function used 
in [6] and given below. The least data approximation error E=0.000612 was obtained 
after performing 100 epochs. The MF’s interpretability did not improve for a smaller 
number of epochs. 
                             .                         (11) 1x,x1,21.37/)1.0x4x2(y 21

2
21 ≤≤−++=

Fig. 5 shows the final MF’s over input variable x1 for a 9-rule fuzzy system trained by 
the new neuro-fuzzy approach and the same data used in Wang-Mendel’s method. 
The least data approximation error E=0.00194 was obtained after performing 16 
epochs. After epoch 16, the error value got bigger and no improvement was obtained 
in the MF’s interpretability.      

  
Fig. 5. Final MF’s obtained in the new 

neuro-fuzzy method 
Fig. 6. Initial MF’s used in a  Nomura system 

3.3.9 Firing State Problem 

In the considered neuro-fuzzy methods, the learning process changes the parameters 
of the MF’s and even duplicated ones (conventional) become distinct during or after 
learning (See [5]). Hence, even if the initial MF’s are as in Figs. 2 or 3, they may turn 
out to be similar to those in Fig. 1 or having no overlap between adjacent ones due to 
the unconstrained learning. This causes non-firing states. Hence, the learning may not 
complete the specified number of epochs. Fig. 6 shows the initial MF’s used on x1 and 
x2 in a 9-rule Nomura system trained using the 81 data points noted in Section 3.3.8. 
The learning stopped after the second epoch. 

4    Defuzzification-Based Learning  
A new defuzzification-based algorithm for learning fuzzy rules [8-10] is first 
summarized here, and then, compared with the considered neuro-fuzzy ones. The 
comparison is based on the properties addressed in Section 3.3. 
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4.1 Defuzzification-Based Algorithm 

Consider a two-input, one-output fuzzy inference system. Let A1s, s = 1,2…l1, and 
A2q, q = 1,2,…,l2 be overlapping MF’s assigned on input variables x1 and x2 
respectively and in a manner that the specified ranges of these variables are covered. 
Then, k=l1×l2 fuzzy rules are constructed as in (8) but with y(s-1)l2+q replaced by 
overlapping MF’s assigned on the output variable y and denoted as C(s-1)l2+q  for  
1≤[(s-1)l2+q]≤l1×l2. These MF’s do not need to be all distinct but they have to cover 
the entire specified range of the output variable. 

The fuzzy output, corresponding to a crisp input pair xi=(xli , x2i), is obtained using 
the CRI [13]: 

                    )]y(C)x(A)x(A[max)y(C ql)1s(i2q2i1s1
ll]ql)1s[(1

i0 2
212

+−
×≤+−≤

∧∧= .          (12)        

The fuzzy OR, AND and THEN are represented here by maximum, minimum and 
minimum respectively. Other operations can be used as well and (12) can be 
generalized easily to systems with higher dimensional input spaces. Now, 
defuzzification applies to the normalized version of C0i(y) , denoted C0in(y), as [8-10]: 

                              .                          (13) ααδαδδ d)](c)1()(c[)]y(C[F 21
1
0in0 −+= ∫

[c1(α),c2(α)] is the α-level set of C0in(y) and δ is a parameter whose values are in [0,1]. 
Eq.(13) is used to train initial fuzzy systems based on input-output data. All initial 
rules consequents are required to be equal to the left-most output fuzzy set, which is 
to be formed by a flat and a decreasing part or a decreasing part only. 

Given the training input-output data (xi, yid), with xi = (x1i, x2i, …, xpi), and xi, yid 
being within the specified input and output ranges, the learning starts with an initial 
fuzzy system as specified above. The algorithm computes the fuzzy outputs for all xi’s 
using (12) and then defuzzifies their normalized versions using (13) with δ=1. Here, 
due to the above-noted initial rules consequents, all the defuzzified values will be 
equal to the smallest value of the output range. Hence, F1[C0in(y)] ≤yid for all i=1, 2, 
…, n. For these defuzzified values, the total error E is computed using some error 
function, which could be as in (7) or any other function, and compared with a desired 
error Ed. If E≤Ed , then the learning stops. Otherwise, δ is decreased from 1 to 0 
passing by discrete values. For each δ, the error is computed and compared with Ed. 
The decrease in δ causes an increase in the defuzzified values. They are then made 
closer to the desired outputs. Whether the change in δ satisfies the error goal, then the 
learning stops. Otherwise, the algorithm starts another learning round (or epoch) from 
δ = 1 but with new rules.  

These new rules are obtained by raising each rule consequent by one fuzzy set. If this 
leads to a violation of F1[C0in(y)]≤yid, it can be reestablished by repeatedly lowering 
the consequents of the rules triggering one fuzzy output with defuzzified value greater 
than its desired counterpart. Once the inequality is reinstated, then the decrease in δ is 
repeated and the error is computed and compared with Ed . This process is repeated 
until either the error goal is satisfied or no more raise in the rules consequents is 
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possible or when the raise and lowering of the rules consequents result in a previously 
obtained system. When the learning ends, the algorithm delivers the final fuzzy 
system, the resulting error and the final δ value. A complete description and 
justification of the learning steps in this algorithm was offered in [9]. 

4.2 Properties-Based Comparison with the Neuro-Fuzzy Algorithms 

4.2.1 Type of Membership Functions 

Unlike the considered neuro-fuzzy learning methods, the defuzzification-based 
algorithm can accommodate any type of MF’s. This is because the learning is based 
on the use of (12) and (13) with no derivatives involved. Also, changing the form of 
the MF’s does not require new formulas for learning. 

4.2.2 Type of Logic Operations and Error Functions 

Again, since no derivatives are used, then there is no restriction on the use of 
operations for AND, OR and THEN as in the considered neuro-fuzzy approaches. 
Furthermore, since the error function is not differentiated, then any error function; 
such as, the mean-square error, (7), root mean-square error, mean absolute error, etc., 
can be used.      

4.2.3 Type of Learning 

The objective of the learning process applied in the deffuzification-based algorithm is 
to reduce the total error resulting from the whole data set rather than the point-wise 
error. So, the type of learning applied here is compatible with batch mode. This is 
preferable due to the existence of only one parameter and a fixed number of output 
fuzzy sets from which the choice is made to form a good compromise for all the data 
points (See Sections 3.1 and 3.3.8). 

4.2.4 Setting of Initial MF’s and Rules 

As explained in Section 4.1, the setting of the rules antecedents is easy and is done in 
the same way as in the new neuro-fuzzy approach. Hence, with overlapping MF’s 
over each input, initial non-firing is avoided (See Eq. (12) and Section 3.3.4). Further, 
the initial rules consequents are equal to the left-most of the fuzzy sets assigned over 
the output. This guarantees that for δ=1 the defuzzified output for any crisp input be 
equal to the lowest value of the output range. Requiring also that the right-most of the 
fuzzy sets assigned over the output be formed by a flat and an increasing part or an 
increasing part only guarantees that no defuzzified output for any input and any 
δ∈[0,1] exceeds the highest value of the output range. These can be checked easily by 
referring to (12), (13). In the considered neuro-fuzzy approaches, however, it is not 
specified how the initial crisp consequents are assigned. Also, we do not have bounds 
on the system outputs nor specified values for the range of the output variable.  

4.2.5 Simplicity of Learning Formulas 

The defuzzification formula (13) is the one used for learning and it applies to the 
output fuzzy set after it is determined using (12). Hence, the learning formula remains 
simple even if the dimensionality of the system input or the number of rules increases.   

4.2.6 Number of Tuning Parameters 

 

170        J. Saade, A. Fakih



In the defuzzification-based algorithm, there is only one crisp parameter, δ, to be 
updated. However, if we consider the fuzzy consequents of the rules, which are also, 
changed, then the total number of parameters is equal to (k+1). This is less than the 
number of parameters used in the neuro-fuzzy methods (Section 3.3.6).  

4.2.7 Fitting to Training Data 

The data fitting in the defuzzification-based algorithm is expected to be less precise 
than that in the considered neuro-fuzzy approaches. This is because the algorithm has 
a smaller number of parameters.  

4.2.8 Linguistic Interpretability 

The learning process described in Section 4.1 does not change the initial MF’s 
assigned over the system inputs. Also, the consequents of the rules are selected from 
specified fuzzy sets over the output variable. Hence, with the input and output fuzzy 
sets assigned appropriately to permit a simple and clear linguistic labeling, then the 
generated rules will have a clear linguistic meaning. This serves well the issue of 
linguistic representation of knowledge but it is at the expense of accuracy as expected 
(See [11,12]). Data over-fitting, however, hinders the noise insensitivity and the 
generalization capability of the learning algorithm as shown in [9,14]. 

A 9-rule fuzzy system, with three triangular MF’s on each input (as in Fig.6) and 7 
triangular MF’s on the output, was trained by the defuzzification-based algorithm. 
The 81 data noted in Section 3.3.8 were used. The final system had an error 
E=0.01234 and δ= 0.45.  

4.2.9 Firing State Problem 

Since the input MF’s are not changed by learning, then unlike the considered neuro-
fuzzy methods, the problem of non-firing states does not arise during or after learning. 

5    Conclusion 
This study has first provided a description and comparison between conventional and  
a new neuro-fuzzy system from the point of view of structure and learning-related 
properties. Both approaches require differentiable MF’s, use fixed logic operations 
and error function, apply pattern learning and suffer from non-firing states during or 
after learning and from the lack of good linguistic interpretability. The new neuro-
fuzzy approach, however, turned out to have a simpler setting of initial MF’s and 
rules to avoid initial non-firing and smaller number of tuning parameters. Yet, the 
conventional approach has less complex learning formulas and more precise data 
fitting. 

Then, a defuzzification-based algorithm has been summarized and shown to possess 
better properties than the considered neuro-fuzzy approaches. It does not require 
differentiable MF’s nor fixed logic operations and error function. Setting the initial 
MF’s and rules is even simpler than that in the new neuro-fuzzy method. The 
possibility of non-firing during of after learning is eliminated. Also, the algorithm 
provides completely interpretable Mamdani-type fuzzy systems with rules having 
fuzzy antecedents and consequents. Further, the algorithm employs batch learning, 
and its formulas apply easily to higher dimensional input spaces.    
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Although the algorithm provides less precise data fitting, this is not a disadvantage 
since it first provides fuzzy systems, which can easily be given a clear linguistic 
meaning. Besides, the available data in practice are noisy. This makes the reduced 
precision a needed aspect to improve noise insensitivity and generalization 
capabilities, as shown in [9,14]. Also, fuzzy modeling becomes more consistent with 
Zadeh’s principle of  “tolerance for imprecision” [13]. 

In fact, performance criteria related to noise insensitivity and generalization 
capabilities were introduced in [14] and the algorithm was examined and compared 
with ANFIS [15] using non-linear functions and a practical robot navigation case 
[14,16]. The performance advantages of the algorithm were demonstrated in these 
studies. Criteria-based performance comparison should also be done with the 
considered neuro-fuzzy approaches and also with an advanced method [17] 
accounting for noisy data.    
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